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I. INTRODUCTION  

After the idea of “Fuzzy Sets” which was introduced by Zadeh [23] in 1965, Deng [5], Erceg [6], Kaleva and 

Seikhala [13], Karamosil and Michalek [14], have introduced the concept of fuzzy metric spaces in different ways. 

Many authors [11], [13], [14], [20], [21] have also studied the fixed point theory in the fuzzy metric spaces and 

developed analysis in such spaces. Consequently in due course of time some metric fixed point results were 

generalized to fuzzy metric spaces by various authors [2], [3], [5-10], [15-16], [19]. 

 Istra�tescu and Criva�t [12] first studied Non-Archimedean probablistic metric spaces and some topological 
preliminaries on them. Achari [1] studied the fixed points of quasi-contraction type mappings in non-Archimedean 

PM-spaces and generalized the results of Istra�tescu [11]. 

         Recently Kutukcu et. al. [17] and Som Tammoy [22] produced significant results on Fuzzy Metric Space. 

Before discussing our main results we require the following definitions and lemmas as preliminaries:   

II. PRELIMINARIES 

Definition 2.1 [18]:  A binary operation ∗∶ [0,1]�[0,1]→[0,1] is called a continuous �-norm if ([0,1],∗) is an abelian 

Topological monodies with unit 1 such that � ∗  � ≥  � ∗  � whenever � ≥   � ��� � ≥  �    � ! �"" �, �, �, �, ∈
 [0, 1]  
 Example of �-norm are � ∗  � =  � � , � ∗  � =  %&� {�, �} and � ∗  � =  %�� {�, �} 

Definition 2.2 [14]: The 3-�*+", (-, .,∗) is called a Non-Archimedean Fuzzy metric space if - is an arbitrary set,∗ 

is a continuous t-norm and M is a fuzzy set in -/  × [0, ∞) satisfying the following conditions for all �, 2, 3 ∈ - 

and 4, � >  0,  
(6. − 1):  .(�, 2, 0) = 0  
(6. − 2):  .(�, 2, �) = 1, ∀ � ≻ 0, ⟺ � = 2  
(6. − 3):  .(�, 2, �) = .(2, �, �) 
(6. − 4):  .(�, 2, max(�, 4)) ≥ .(�, 2, �) ∗ .(3, 2, 4)  
(6. − 5):  .(�, 2, �) = [0,1) → [0,1] is left continuous. 
(6. − 6):  if  .(�, 3; *) = 1, .(3, 2; D) = 1 then .(�, 2; max {*, D}) = 1 
(6. − 7): limG→H .(�, 2, �) = 1, ∀ �, 2 ∈ -  

Note that . (�, 2, �) can be thought of as the degree of nearness between x and y with respect to �. We identify 

� =  2 J&�ℎ . (�, 2, �)  =  1 � ! �"" � >  0 ��� . (�, 2, �)  =  0 with ∞.  
Lemma (1) [10] � ! �"" �, 2 ∈ -,   .(�, 2, �) is non -decreasing. 

Lemma (2) [5] Let {2L} be a sequence in a fuzzy metric space (-, .,∗) with the condition (MN − O) If there exists 

a number P ∈  (0,1) such that   

.(2LQ/, 2LQR, P�) ≥ .(2LQR, 2L, �), ∀ � ≻ 0 and � = 1,2,3, … … …,  
Then {2L} is a Cauchy sequence in -. 
Lemma (3) [18] If for all �, 2 ∈  -, � >  0 and for a number P ∈ (0,1), 
.(�, 2, �) ≥ .(��, 2, �), then  � = 2. 
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Definition 2.3: In addition of definition 2.1, if t is continuous  � [0, 1]  × [0,1] ��� �( �, �)  <  �, �∈[0,1], then � 

is called an Archimedean � – norm. A characterization of Archimedean � – norm is due to Ling [16]. He proved that 

a � – norm is Archimedean if and only if it admits the representation, 

                                                       �(�, �)  =    U(VR)[U(�)  +  U(�)]  
Where U is continuous and decreasing function form [0,1] �  [0, ∞] with U(1) = 0 ��� U (0)  =  ∞ and   U(VR) is 

the pseudo inverse of U. 

                            (U    U(VR)) (�) =  �, for all a in the range of U.  

The continuous decreasing function U appearing in this characterization. is called  an additive generator of the 

Archimedean �-norm.  

III. MAIN RESULTS 

We are going to establish fixed point theorems for two  and triplet of maps on complete non-Archimedean Fuzzy 

Metric space. 

Theorem 3.1: let (-, .,∗) be a complete non Archimedean fuzzy metric space under the Archimedean �-norm �, 
with the additive generator U. Let X ��� Y be two self mappings of - in to it satisfying; 

(3.1.1)        UZ.(X�, Y2, *)[  

                  ≤ ]U{.(�, 2, * ]) ∗ .(�, ^�, * ]) ∗ .(2, Y2, * ]⁄ ) ∗⁄⁄ .(2, X�, * ]⁄ )}  

                      � ! �"" �, 2 ∈ -, * > 0, ��� 0 < ] < 1.  
(3.1.2)          X ��� Y are continuous on -. 
Then X ��� Yhave a unique common fixed point in -.  
Proof: Let �` ∈ -, {�L} be a sequence in - such that  

 �/LQR = X�/L , �/LQR = Y�/LQR, � = 0, 1, 2, 3, … … …  

Be the sequence of iterates under the pair {X, Y} at �`.   
Now from (3.1.1) 

UZ.(�R, �/, *)[ = UZ.(X�`, Y�R, *)[  

≤ ]U{.(�R, �/, * ]⁄ )∗.(�`, X�`, * ]⁄ )∗.(�R, Y�R, * ]⁄ )∗.(�R, X�`, * ]⁄ )}  

= ]U{.(�`, �R, * ]⁄ )∗ .(�`, �R, * ]⁄ )∗.(�R, �/, * ]⁄ )∗.(�R, �R, * ]⁄ )}  

= ]UZ.(�`, �R, * ]⁄ )[  

UZ.(�R, �/, *)[ ≤ ]UZ.(�`, �R, * ]⁄ )[  

Again,  

UZ.(�/, �a, *)[ = UZ.(X�/, Y�R, *)[  

≤ ]UZ.(�R, �/, * ]⁄ )[ ≤ ]/UZ.(�`, �R, * ]/⁄ )[  

Therefore,  

UZ.(�/, �a, *)[ ≤ ]/UZ.(�`, �R, * ]/⁄ )[  

Hence it follows by induction that for every positive integer �,  
UZ.(�L , �LQR, *)[ ≤ ]LUZ.(�`, �R, * ]L⁄ )[  

Now for % > � > 0 and * > 0 we have,  

.(�/LQR, �/LQ/b , *)  

≥ �{.(�/LQR, �/LQ/, *)∗.(�/LQ/, �/LQ/b , *)}  

Since ] < 1 and � is non decreasing and (FM-6). 

≥ {.(�/LQR, �/LQ/, *)∗.(�/LQ/, �/LQa, *)∗.(�/LQa, �/LQ/b , ]/*))}  

= {.(�/LQR, �/LQ/, *)∗.(�/LQ/, �/LQa, *)∗.(�/LQa, �/LQ/b , ]/*))}  

= UVR{U[{.(�/LQR, �/LQ/, *)∗.(�/LQ/, �/LQa, ]*)∗] + U[.(�/LQa, �/LQ/b , ]/*)]}  

= UVR{U[UVR{U[.(�/LQR, �/LQ/, *)] + U[.(�/LQ/, �/LQa, ]*)] + U[.(�/LQa, �/LQ/b , ]/*)]}   
≥
UVR{U[UVR{]/LQRU[.(�`, �R, * ]/LQR⁄ )] + ]/LQ/U[.(�`, �R, * ]/LQR⁄ )] + ⋯ … … … +
U[.(�/LQ/bVR, �/LQ/b , ]/bV/*)]}  

≥
UVR{U[UVR{]/LQRU[.(�`, �R, * ]/LQR⁄ )] + ]/LQ/U[.(�`, �R, * ]/LQR⁄ )] + ⋯ … … … +
]/LQ/bVRU[.(�`, �R, * ]/LQR⁄ )]}  
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Hence we conclude {�L} be a sequence , since U(VR) and U are continuous,  

]L → 0, �4 � → ∞, 6. − 7 ��� U(VR)(0) = 1.   
(-, .,∗) is complete there is point 3 ∈ - such that �L → 3 the subsequences {�/L}, {�/LQR} converges to 3 &,  
�/L → 3,  �/LQR → 3  continuity of X ��� Y implies that  

X�/L → X3,  Y�/LQR → Y3.    
We shall now show that 3 is common fixed point of X ��� Y however we have,   

.(3, X3, *) ≥ �{.(3, �/L , *).(�/L , X3, *)}  

= U(VR){U[.(3, �/L , *)] + U[.(�/L , X3, *)]}   

= U(VR){U[.(3, �/L , *)] + U[.(�/LVR, X3, *)]}   

= U(VR){U[.(3, �/L , *)] + ]U[.(�/LVR, X3, * ]⁄ )]}  
lim
L→H

U(VR){U[.(3, �/L , *)] + ]U[.(�/LVR, X3, * ]⁄ )]} = 1  

Using (3.1.1), (3.1.2) we get X3 = 3.  
Again, 

.(3, Y3, *) ≥ �{.(3, �/LQR, *).(�/LQR, Y3, *)}  

= U(VR){U[.(3, �/LQR, *)] + U[.(�/LQR, Y3, *)]}   

= U(VR){U[.(3, �/LQR, *)] + U[.(�/L , Y3, *)]}   

= U(VR){U[.(3, �/LQR, *)] + ]U[.(�/L , 3, * ]⁄ )]}  
≥ lim

L→H
U(VR){U[.(3, �/LQR, *)] + ]U[.(�/L , 3, * ]⁄ )]} = 1  

Thus 3 is common fixed point of X ��� Y.  
In order to show that 3 is the only common fixed point of X ��� Y, if possible let w be any other common fixed 

point of X ��� Y 

We have from (3.1.1) 

.(�, J, *) = .(X3, YJ, *)  

UZ.(X3, YJ, *)[  

≤ ]U{.(3, J, * ]⁄ )∗.(3, X3, * ]⁄ )∗.(J, YJ, * ]⁄ )∗.(J, X3, * ]⁄ )∗}  

= ]UZ.(3, J, * ]⁄ )[  

Therefore,  

U(.(3, J, *) ≤ ]U(.(3, J, * ]⁄ ) < UZ.(3, J, * ]⁄ )[,   since ] < 1.  
⟹ .(3, J, *) ≥ .(3, J, * ]⁄ )  

Since U is decreasing function, giving a contradiction as */] >  *  

As ] <  1 and .(�, 2, *) is non decreasing function.Thus 3 =  J. 
Corollary (3.2): Let (-, .,∗) be a complete Non-Archimedean Fuzzy Metric Space under the Archimedean �-

norm �, with the additive generator U. Let Y be self mapping of - in to itself satisfying;   

(3.2.1)   UZ.(Y�, Y2, *)[  

≤ ]U .��{.(�, 2, * ]⁄ ), .(�, Y�, * ]⁄ ), .(2, Y2, * ]⁄ ), .(�, Y�, * ]⁄ )}  

For all �, 2 ∈ -, * > 0, and 0 < ] < 1.  
(3.2.2)    is continuous on -.  
Then Y has fixed point in -.  

  Proof: Put   X =  Y,  in the theorem 3.1.1              

In the next theorem we further extend the results of theorem 3.1 for three self mappings.  

Theorem 3.3: Let (-, .,∗) be a complete Non –Archimedean Fuzzy Metric Space under the � −norm and the 

additive generator g. Let X, Y ��� f be three self mappings of -, satisfying � ∗ � ∗ � ∗ � =  %��(�, �, �, �); 
(3.3.1)    U(.(Xf�, Yf�, *) ≤ ]U{.(�, 2, * ]⁄ )∗.(�, Xf�, * ]⁄ )∗.(2, Yf2, * ]⁄ )∗.(�, Xf�, * ]⁄ )∗     

For all �, 2, ∈ - * > 0  and  0 < ] < 1.  
 (3.3.2)    Q commutes with X ��� Y, that is, Xf = fX ��� Yf =  fY 

 (3.3.3)     X, f ��� Y are continuous on -. 
     Then X, Y ��� f have a unique common fixed point in -. 
Proof: Suppose Xf = g ��� Yf = h, then g ��� h satisfy all conditions of theorem 3.1 and therefore g ��� h 

have unique common fixed point say 3. 
                                                  g3 = h3 = 3 . &,. Xf3 =  3, Yf3 =  3.  
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Now we shall show z is a common fixed point of X, Y ��� f. 
It will be sufficient to prove Y3 = 3. 
We have, 

.(3, f3, *) = .(Xf3, Yff3, *)  

Therefore from (3.3.1)  

UZ.(Xf3, Yff3, *)[  

≤ ]U{.(3, f3, * ]⁄ )∗.(3, Xff3, * ]⁄ )∗.(f3, Yff3, * ]⁄ )∗.(f3, Xff3, * ]⁄ )}  

= ]U{.(3, f3, * ]⁄ )∗.(3, fXf3, * ]⁄ )∗.(f3, fYf3, * ]⁄ )∗.(f3, fXf3, * ]⁄ )}   

]U{.(3, f3, * ]⁄ )∗.(3, f3, * ]⁄ )∗.(f3, f3, * ]⁄ )∗.(f3, f3, * ]⁄ )}    

]UZ.(3, f3, * ]⁄ )[  

Therefore,  

UZ.(3, f3, *)[ ≤ ]UZ.(3, f3, * ]⁄ )[ < UZ.(3, f3, * ]⁄ )[  

Since ] < 1.   
⟹ .(3, f3, *) ≥ .(3, f3, * ]⁄ )  for all * > 0.                               

Since U is decreasing function we get a contradiction, since */] >  * �4 ] < 1 and .(�, 2 , *) is non decreasing 

function. Hence we must have f3 = 3.                                                 

Now,      

 3 =  g3 =  Xf3 =  X3  
And 3 =  h3 =  Yf3 =  Y3. Thus 3 =  X3 = Y3 =  f3. 
The uniqueness of 3 as a common fixed point of X, f ��� Y, 
Follows from the fact that 3 is a unique common fixed point of Xf ��� Yf. 
This completes the proof. 
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